miércoles, 18 de agosto de 2010

FALLOS DE LA BIOS

BIOS AMI






Ningún pitido. Esto significa varias cosas. Primeramente nos aseguramos de que el speaker esté bien conectado, luego revisamos el cable de alimentación. En caso de estar todo bien y la configuración de swichers y jumpers también l sea cambiaremos la placa por defectuosa. Ese fallo se debe en la mayoría de las veces por fallos de corriente.




Un pitido. Este pitido indica que todo esta correcto. En caso de no dar imagen revisaremos la tarjeta grafica y la memoria RAM.

Dos pitidos. Es un problema de memoria en tarjeta de video o en la RAM. Si vemos imagen nos aparecerá un mensaje de error. Si es así cambiaremos la memoria RAM de posición en los zócalos que ocupa ya que existe un problema de paridad, o en los primeros 64Kbytes de memoria. Si el problema persiste cambiaremos la placa.

Tres pitidos. Lo mismo que cuando suenan dos pitidos.

Cuatro pitidos. Lo mismo que ocurre con dos y tres pitidos. En este caso además puede ser un error en el reloj del sistema

Cinco pitidos. La placa base no ha detectado memoria RAM, o no es compatible procedemos a cambiarla de posición o a cambiarla por otra. En muchos casos la marca de la RAM influye mucho.

Seis pitidos. La controladora de teclado estropeada, hay que cambiar de placa.

Siete pitidos. No se ha podido detectar el procesador o no funciona. Lo cambiamos o revisamos la configuración.

Ocho pitidos. No se ha detectado tarjeta de video o no funciona. Cambiamos de slot la tarjeta o revisamos al memoria de video.

Nueve pitidos. El código de la BIOS está corrupto, procedemos a flasearla si podemos, o a reemplazar el chip.

Diez pitidos. La BIOS no puede leer / escribir los datos almacenados en la CMOS. Intentamos borrar estos datos puenteando el jumper “Clean CMOS” o quitando la pila, e intentamos salvar los valores de nuevo en la CMOS. Si el problema persiste tendremos que cambiar la placa ya que este chip viene siempre soldado.

Once pitidos. La memoria caché del sistema (640Kbytes en la placa) esta dañada o no pude acceder a ella . Podemos reactivar la caché mediante la combinación Control + Alt + Shift + I


BIOS AWARD









Si poseemos esta BIOS ya nos vale agudizar el oído. En la mayoría de los pitidos se les acompaña un mensaje de error.

Tono ininterrumpido. Fallo en el suministro eléctrico. Revisamos las conexiones y la fuente de alimentación.

Tonos cortos constantes. Sobrecarga eléctrica, chips defectuosos, placa mal...

1 largo. Si aparece esto en la pantalla “RAM Refresh Failure”, significa que los diferentes componentes encargados del refresco de la memoria RAM fallan o no están presentes. Cambiar de banco la memoria y comprobar los jumpers de buses.

1 largo y 1 corto. El código de la BIOS esta corrupto o defectuoso, probaremos a flasear o reemplazamos el chip de la BIOS sino podemos cambiamos de placa.

1 largo y dos cortos. No da señal de imagen, se trata de que nuestra tarjeta de vídeo esta estropeada, probaremos a pincharla en otro slot o probaremos otra tarjeta gráfica.

1 largo y 2 cortos. Si aparece por pantalla este mensaje: “No video card found”, este error solo es aplicable a placas base con tarjetas de vídeo integradas. Fallo en la tarjeta gráfica, probaremos a desabilitarla y pincharemos una nueva en cualquier slot libre o cambiaremos la placa madre.

1 largo y 3 cortos. Si aparece este mensaje por pantalla “No monitor connected” Idem que el anterior.

1 largo y varios cortos. Mensaje de error. “Video related failure”. Lo mismo que antes. Cada fabricante implanta un código de error según el tipo de tarjeta de video y los parámetros de cada BIOS

2 largos y 1 corto. Fallo en la sincronización de las imágenes. Cargaremos por defecto los valores de la BIOS e intentaremos reiniciar. Si persiste nuestra tarjeta gráfica o placa madre están estropeadas.

2 cortos. Vemos en la pantalla este error: “Parity Error”. Se trata de un error en la configuración de la BIOS al no soportar la paridad de memoria, la deshabilitamos en al BIOS.

3 cortos. Vemos en la pantalla este error. Base 64 Kb “Memory Failure”, significa que la BIOS al intentar leer los primeros 64Kbytes de memoria RAM dieron error. Cambiamos la RAM instalada por otra.

4 cortos. Mensaje de error; “Timer not operational”. El reloj de la propia placa base esta estropeado, no hay mas solución que cambiar la placa. No confundir con “CMOS cheksum error” una cosa es la pila y otra el contador o reloj de la placa base.

5 cortos. Mensaje por pantalla “Processor Error” significa que la CPU ha generado un error porque el procesador o la memoria de vídeo están bloqueados.

6 cortos. Mensaje de error: “8042 - Gate A20 Failure”, muy mítico este error. El controlador o procesador del teclado (8042) puede estar en mal estado. La BIOS no puede conmutar en modo protegido. Este error se suele dar cuando se conecta/desconecta el teclado con el ordenador encendido.

7 cortos. Mensaje de error: “Processor Exception / Interrupt Error” Descripción. La CPU ha generado una interrupción excepcional o el modo virtual del procesador está activo. Procesador a punto de morirse.

8 cortos. Mensaje de error: “Display Memory Read / Write error”. La tarjeta de video esta estropeada, procedemos a cambiarla.

9 cortos. Mensaje de error: “ROM Checksum Error”; el valor del checksum (conteo de la memoria) de la RAM no coincide con el valor guardado en la BIOS. Reseteamos los valores de la CMOS y volvemos a aconfigurar y si persiste tendremos la RAM o la BIOS estropeadas.

10 cortos. Si vemos por pantalla esto; “CMOS Shutdown Register / Read/Write Error”: el registro de la CMOS RAM falla a la hora de la desconexión. En otras palabras que no puede escribir en la CMOS cuando salimos de configurar la BIOS.

11cortos. Mensaje de error: “Cache Error / External Cache Bad” la memoria caché (L1o L2) del procesador están fallando. También se aplica a la cache de la placa.

1 pitido largo + 8 pitidos cortos. Error en la verificación de tarjeta de video, esta está defectuosa, procedemos a cambiarla

1 pitido largo + 3 pitidos cortos. Fallo en la comprobación de la RAM (Reemplazar la memoria) posiblemente porque los ciclos de reloj de esa memoria no se corresponden con los de la placa o no son compatibles ( memoria de marca o no ).


LINEA DE VISTA Y EFECTO ELECTROMAGNETICO


LINEA DE VISTA


En el modo punto-a-punto los patrones de radiación del emisor y del receptor deben de estar lo más cerca posible, para que su alineación sea correcta. Como resultado, el modo punto-a-punto requiere una línea-de-vista entre las dos estaciones a comunicarse. Este modo es usado para la implementación de redes Inalámbricas Infrarrojas Token-Ring. El "Ring" físico es construido por el enlace inalámbrico individual punto-a-punto conectado a cada estación.

A diferencia del modo punto-a-punto, el modo cuasi-difuso y difuso son de emisión radial, o sea que cuando una estación emite una señal Optica, ésta puede ser recibida por todas las estaciones al mismo tiempo en la célula. En el modo cuasi–difuso las estaciones se comunican entre si, por medio de superficies reflejantes . No es necesaria la línea-de-vista entre dos estaciones, pero si deben de estarlo con la superficie de reflexión. Además es recomendable que las estaciones estén cerca de la superficie de reflexión, esta puede ser pasiva ó activa. En las células basadas en reflexión pasiva, el reflector debe de tener altas propiedades reflectivas y dispersivas, mientras que en las basadas en reflexión activa se requiere de un dispositivo de salida reflexivo, conocido como satélite, que amplifica la señal óptica. La reflexión pasiva requiere más energía, por parte de las estaciones, pero es más flexible de usar.

En el modo difuso, el poder de salida de la señal óptica de una estación, debe ser suficiente para llenar completamente el total del cuarto, mediante múltiples reflexiones, en paredes y obstáculos del cuarto. Por lo tanto la línea-de-vista no es necesaria y la estación se puede orientar hacia cualquier lado. El modo difuso es el más flexible, en términos de localización y posición de la estación, sin embargo esta flexibilidad esta a costa de excesivas emisiones ópticas.

Por otro lado la transmisión punto-a-punto es el que menor poder óptico consume, pero no debe de haber obstáculos entre las dos estaciones. En la topología de Ethernet se puede usar el enlace punto-a-punto, pero el retardo producido por el acceso al punto óptico de cada estación es muy representativo en el rendimiento de la red. Es más recomendable y más fácil de implementar el modo de radiación cuasi-difuso. La tecnología infrarroja esta disponible para soportar el ancho de banda de Ethernet, ambas reflexiones son soportadas (por satélites y reflexiones pasivas).


EFECTO ELECTROMAGNÉTICO


Cuando los electrones se mueven crean ondas electromagnéticas que se pueden propagar en el espacio libre, aun en el vació.

La cantidad de oscilaciones por segundo de una onda electromagnética es su frecuencia, f, y se mide en Hz. La distancia entre dos máximos o mínimos consecutivos se llama longitud de onda y se designa con la letra griega l .

Al conectarse una antena apropiada a un circuito eléctrico, las ondas electromagnéticas se pueden difundir de manera eficiente y captarse por un receptor a cierta distancia. Toda la comunicación inalámbrica se basa en este principio.
En el vació todas las ondas electromagnéticas viajan a la misma velocidad, sin importar su frecuencia. Esta velocidad, usualmente llamada velocidad de la luz, c, es aproximadamente 3x108 m/seg.

Las porciones de radio, microondas, infrarrojo y luz visible del espectro pueden servir para transmitir información modulando la amplitud, la frecuencia o la fase de las ondas.




REDES AD HOC

En redes de comunicación, una red ad hoc es aquella (especialmente inalámbrica) en la que no hay un nodo central, sino que todos los dispositivos están en igualdad de condiciones. Ad hoc es el modo más sencillo para el armado de una red. Sólo se necesita contar con 2 placas o tarjetas de red inalámbricas (de la misma tecnología). Una vez instaladas en los PC se utiliza el software de configuración del fabricante para configurarlas en el modo ad-hoc, definiendo el identificador común que utilizarán (SSID). 

Este modo es recomendable sólo en caso de que necesitemos una comunicación entre no más de dos dispositivos. Son por ejemplo redes ad hoc las que se crean de forma espontánea, sin una infraestructura específica y funcionando en un espacio y tiempo limitados


SEGURIDAD DE LAS REDES WI-FI




Wi-Fi está diseñado para conectar ordenadores a la red a distancias reducidas, cualquier uso de mayor alcance está expuesto a un excesivo riesgo de interferencias.

Un muy elevado porcentaje de redes son instalados sin tener en consideración la seguridad convirtiendo así sus redes en redes abiertas. Existen varias alternativas para garantizar la seguridad de estas redes. Las más comunes son la utilización de protocolos de cifrado de datos para los estándares Wi-Fi como el WEP, el WPA, o el WPA2 que se encargan de codificar la información transmitida para proteger su confidencialidad, proporcionados por los propios dispositivos inalámbricos.

ALGUNOS SON:


  • WEP, cifra los datos en su red de forma que sólo el destinatario deseado pueda acceder a ellos. Los cifrados de 64 y 128 bits son dos niveles de seguridad WEP. WEP codifica los datos mediante una “clave” de cifrado antes de enviarlo al aire. Este tipo de cifrado no está muy recomendado, debido a las grandes vulnerabilidades que presenta, ya que cualquier cracker puede conseguir sacar la clave.

  • WPA: presenta mejoras como generación dinámica de la clave de acceso. Las claves se insertan como de dígitos alfanuméricos, sin restricción de longitud

  • IPSEC (túneles IP) en el caso de las VPN y el conjunto de estándares IEEE 802.1X, que permite la autenticación y autorización de usuarios.

  • Filtrado de MAC, de manera que sólo se permite acceso a la red a aquellos dispositivos autorizados. Es lo más recomendable si solo se va a usar con los mismos equipos, y si son pocos.

  • Ocultación del punto de acceso: se puede ocultar el punto de acceso (Router) de manera que sea invisible a otros usuarios.

  • El protocolo de seguridad llamado WPA2 (estándar 802.11i), que es una mejora relativa a WPA. En principio es el protocolo de seguridad más seguro para Wi-Fi en este momento. Sin embargo requieren hardware y software compatibles, ya que los antiguos no lo son.

WI-FI

DEFINICIÓN: es una marca de la Wi-Fi Alliance anteriormente la WECA: Wireless Ethernet Compatibility Alliance, la organización comercial que adopta, prueba y certifica que los equipos cumplen los estándares 802.11 relacionados a redes inalámbricas de área local.




ESTÁNDARES



Existen diversos tipos de Wi-Fi, basado cada uno de ellos en un estándar IEEE 802.11 aprobado. Son los siguientes:
  • Los estándares IEEE 802.11bIEEE 802.11g e IEEE 802.11n disfrutan de una aceptación internacional debido a que la banda de 2.4GHz está disponible casi universalmente, con una velocidad de hasta 11 Mbps , 54 Mbps y 300 Mbps, respectivamente.

  • En la actualidad ya se maneja también el estándar IEEE 802.11a, conocido como WIFI 5, que opera en la banda de 5 GHz y que disfruta de una operatividad con canales relativamente limpios. La banda de 5 GHz ha sido recientemente habilitada y, además, no existen otras tecnologías (BluetoothmicroondasZigBeeWUSB) que la estén utilizando, por lo tanto existen muy pocas interferencias. Su alcance es algo menor que el de los estándares que trabajan a 2.4 GHz (aproximadamente un 10%), debido a que la frecuencia es mayor (a mayor frecuencia, menor alcance).

  • Un primer borrador del estándar IEEE 802.11n que trabaja a 2.4 GHz y a una velocidad de 108 Mbps. Sin embargo, el estándar 802.11ges capaz de alcanzar ya transferencias a 108 Mbps, gracias a diversas técnicas de aceleramiento. Actualmente existen ciertos dispositivos que permiten utilizar esta tecnología, denominados Pre-N.

Existen otras tecnologías inalámbricas como Bluetooth que también funcionan a una frecuencia de 2.4 GHz, por lo que puede presentar interferencias con Wi-Fi. Debido a esto, en la versión 1.2 del estándar Bluetooth por ejemplo se actualizó su especificación para que no existieran interferencias con la utilización simultánea de ambas tecnologías, además se necesita tener 40.000 k de velocidad.

REDES INALAMBRICAS

DEFINICIÓN 






El término red inalámbrica (Wireless network) en inglés es un término que se utiliza en informática para designar la conexión de nodos sin necesidad de una conexión física (cables), ésta se da por medio de ondas electromagneticas. La transmisión y la recepción se realizan a través de puertos.

Una de sus principales ventajas es notable en los costos, ya que se elimina todo el cable ethernet y conexiones físicas entre nodos, pero también tiene una desventaja considerable ya que para este tipo de red se debe de tener una seguridad mucho mas exigente y robusta para evitar a los intrusos.

TIPOS DE REDES 

1. Wireless Personal Area Network: En este tipo de red de cobertura personal, existen tecnologías basadas en HomeRF(estándar para conectar todos los teléfonos móviles de la casa y los ordenadores mediante un aparato central); Bluetooth (protocolo que sigue la especificación IEEE 802.15.1); ZigBee(basado en la especificación IEEE 802.15.4 y utilizado en aplicaciones como la domótica, que requieren comunicaciones seguras con tasas bajas de transmisión de datos y maximización de la vida útil de sus baterías, bajo consumo); RFID (sistema remoto de almacenamiento y recuperación de datos con el propósito de transmitir la identidad de un objeto (similar a un número de serie único) mediante ondas de radio.

2. Wireless Local Area Network: En las redes de área local podemos encontrar tecnologías inalámbricas basadas en HiperLAN (del inglés, High Performance Radio LAN), un estándar del grupo ETSI, o tecnologías basadas en Wi-Fi, que siguen el estándar IEEE 802.11 con diferentes variantes.

3. Wireless Metropolitan Area Network: Para redes de área metropolitana se encuentran tecnologías basadas en WiMAX (Worldwide Interoperability for Microwave Access, es decir, Interoperabilidad Mundial para Acceso con Microondas), un estándar de comunicación inalámbrica basado en la norma IEEE 802.16. WiMAX es un protocolo parecido a Wi-Fi, pero con más cobertura y ancho de banda. También podemos encontrar otros sistemas de comunicación como LMDS (Local Multipoint Distribution Service).

4. Wireless Wide Area Network: En estas redes encontramos tecnologías como UMTS (Universal Mobile Telecommunications System), utilizada con los teléfonos móviles de tercera generación (3G) y sucesora de la tecnología GSM (para móviles 2G), o también la tecnología digital para móviles GPRS (General Packet Radio Service).



CARACTERÍSTICAS

  • Ondas de radio: las ondas electromagnéticas son omnidireccionales, así que no son necesarias las antenas parabólicas. La transmisión no es sensible a las atenuaciones producidas por la lluvia ya que se opera en frecuencias no demasiado elevadas. En este rango se encuentran las bandas desde la ELF que va de 3 a 30 Hz, hasta la banda UHF que va de los 300 a los 3000 MHz, es decir, comprende el espectro radioelectrico de 30 - 3000000 Hz.
  • Microondas terrestres: se utilizan antenas parabólicas con un diámetro aproximado de unos tres metros. Tienen una cobertura de kilómetros, pero con el inconveniente de que el emisor y el receptor deben estar perfectamente alineados. Por eso, se acostumbran a utilizar en enlaces punto a punto en distancias cortas. En este caso, la atenuación producida por la lluvia es más importante ya que se opera a una frecuencia más elevada. Las microondas comprenden las frecuencias desde 1 hasta 300 GHz.
  • Microondas por satélite: se hacen enlaces entre dos o más estaciones terrestres que se denominan estaciones base. El satélite recibe la señal (denominada señal ascendente) en una banda de frecuencia, la amplifica y la retransmite en otra banda (señal descendente). Cada satélite opera en unas bandas concretas. Las fronteras frecuenciales de las microondas, tanto terrestres como por satélite, con los infrarrojos y las ondas de radio de alta frecuencia se mezclan bastante, así que pueden haber interferencias con las comunicaciones en determinadas frecuencias.
  • Infrarrojos: se enlazan transmisores y receptores que modulan la luz infrarroja no coherente. Deben estar alineados directamente o con una reflexión en una superficie. No pueden atravesar las paredes. Los infrarrojos van desde 300 GHz hasta 384 THz.